How to Convert A Nested Dictionary to Pandas Dataframe?

3 minutes read

To convert a nested dictionary to a pandas dataframe, you can first flatten the nested dictionary using a function like json_normalize from the pandas library. This function can create a flat table from a nested JSON object.


First, import pandas and then use the json_normalize function to flatten the nested dictionary. You can pass the nested dictionary to this function, and it will create a dataframe with all the nested keys as columns.


For example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import pandas as pd
from pandas.io.json import json_normalize

nested_dict = {
    'A': {
        'a': 1,
        'b': 2
    },
    'B': {
        'c': 3,
        'd': 4
    }
}

df = json_normalize(nested_dict)
print(df)


This will give you a dataframe with columns 'A.a', 'A.b', 'B.c', and 'B.d' and corresponding values from the nested dictionary. This is how you can convert a nested dictionary to a pandas dataframe.


How to merge multiple dataframes in Pandas?

You can merge multiple dataframes in Pandas using the merge() function. Here's an example of how to merge two dataframes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
import pandas as pd

# Create two dataframes
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [1, 2, 3], 'C': [7, 8, 9]})

# Merge the two dataframes on the 'A' column
merged_df = pd.merge(df1, df2, on='A')

print(merged_df)


This will merge df1 and df2 based on the values in the 'A' column, resulting in a new dataframe merged_df that combines the data from both dataframes. You can also merge on multiple columns by passing a list of column names to the on parameter.


How to concatenate dataframes in Pandas?

In Pandas, you can concatenate dataframes using the concat function. Here is an example of how to concatenate two dataframes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
import pandas as pd

# Create two dataframes
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})

# Concatenate the two dataframes
result = pd.concat([df1, df2])

print(result)


This will concatenate df1 and df2 along the rows and create a new dataframe result. You can also concatenate dataframes along columns by setting the axis parameter to 1:

1
result = pd.concat([df1, df2], axis=1)


You can also concatenate more than two dataframes by passing a list of dataframes to the concat function.


How to merge two nested dictionaries in Python?

You can merge two nested dictionaries in Python using the update() method. Here is an example of how to merge two nested dictionaries:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Two nested dictionaries
dict1 = {
    'key1': {
        'nested_key1': 'value1',
        'nested_key2': 'value2'
    }
}

dict2 = {
    'key1': {
        'nested_key3': 'value3'
    },
    'key2': {
        'nested_key4': 'value4'
    }
}

# Merge the two nested dictionaries
def merge_dicts(dict1, dict2):
    for key, value in dict2.items():
        if key in dict1:
            if isinstance(dict1[key], dict) and isinstance(dict2[key], dict):
                merge_dicts(dict1[key], dict2[key])
            else:
                dict1[key] = value
        else:
            dict1[key] = value

merge_dicts(dict1, dict2)

print(dict1)


When you run this code, the output will be:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{
    'key1': {
        'nested_key1': 'value1',
        'nested_key2': 'value2',
        'nested_key3': 'value3'
    },
    'key2': {
        'nested_key4': 'value4'
    }
}


This code merges the two nested dictionaries dict1 and dict2 by adding the key-value pairs from dict2 into dict1. If a key already exists in dict1, the code will recursively merge the nested dictionaries.


How to convert a nested dictionary to pandas dataframe in Python?

You can convert a nested dictionary to a pandas dataframe using the json_normalize function from the pandas library. Here is an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import pandas as pd
from pandas import json_normalize

nested_dict = {
    'A': {
        'a': 1,
        'b': 2,
        'c': 3
    },
    'B': {
        'a': 4,
        'b': 5,
        'c': 6
    }
}

df = json_normalize(nested_dict)
print(df)


This will output:

1
2
   A.a  A.b  A.c  B.a  B.b  B.c
0    1    2    3    4    5    6


Each key in the nested dictionary becomes a column in the resulting dataframe.

Facebook Twitter LinkedIn Telegram Whatsapp

Related Posts:

To read a nested dictionary created from pandas, you can access the inner dictionaries by specifying the keys at each level. You can use nested square brackets to access the values within the nested dictionary. For example, if you have a nested dictionary like...
To convert a dictionary of lists into a pandas dataframe, you can simply pass the dictionary as an argument to the pandas DataFrame constructor. Each key-value pair in the dictionary will be treated as a column in the dataframe, with the key becoming the colum...
To add dictionary items in a pandas column, you can first create a pandas DataFrame and then assign the dictionary as a value to a specific column. For example, you can create a DataFrame like this: import pandas as pd data = {'col1': [1, 2, 3, 4], ...
To convert a list into a pandas dataframe, you can use the pd.DataFrame() constructor in pandas. Simply pass in the list as an argument to create a dataframe with the list elements as rows. You can also specify column names by passing a list of column names as...
One way to normalize uneven JSON structures in pandas is to use the json_normalize function. This function can handle nested JSON structures and flatten them into a Pandas DataFrame. To use this function, you can first read the JSON data into a Pandas DataFram...